大数据读后感5篇

时间:
Indulgence
分享
下载本文

一篇充满情感和思想深度的读后感可以引起读者的共鸣和情感共振,读后感是我对书籍中人物命运的思考和感受,让我更加珍惜生活中的每一次选择,下面是叁五范文网小编为您分享的大数据读后感5篇,感谢您的参阅。

大数据读后感5篇

大数据读后感篇1

对于畅销书刊、热点话题、时尚科技,始终不太感兴趣。书刊,喜欢有一定年份的;话题,钟情于务虚的观点;新奇的产品于我无缘,习惯使用成熟的科技产品。既不清高,也非冷漠,就是要与现实保持一定的距离,给自己留一点思考的空间。这一习惯最近破了例。由于工作的原因,耳濡目染,“大数据”这个新兴概念开始频繁步入我的视野。按捺不住内心的好奇,网购《大数据时代》,手不释卷,三天读完,颇有收获。此书有如下特点。

首先,作者站在理论的制高点上,条理清楚地阐述了大数据对人类的工作、生活、思维带来的革新,大数据时代的三种典型的商业模式,以及大数据时代对于个人隐私保护、公共安全提出的挑战。其次,文中的事例贴近现实生活,贴近时代,令读者既印象深刻,又感同身受。此外,作者没有使用大量的专业术语,没有假装一副专业的面孔。纵观全书,遣词造句,均通俗易懂。

作者认为大数据时代具有三个显著特点。一、人们研究与分析某个现象时,将使用全部数据而非抽样数据;二、在大数据时代,不能一味地追求数据的精确性,而要适应数据的多样性、丰富性、甚至要接受错误的数据。三、了解数据之间的相关性,胜于对因果关系的探索。“是什么”比“为什么”重要。

作者指出,随着技术的发展,数据的存储与处理成本显著降低,人们现在有能力从支离破碎的、看似毫不相干的数据矿渣中抽炼出真知烁见。在大数据时代,三类公司将成为时代的宠儿。一是拥有大数据的公司与组织。如政府、银行、电信公司、全球性互联网公司(阿里巴巴、淘宝网)。二是拥有数据分析与处理技术的专业公司,如亚马逊、谷歌。三是拥有创新思维的公司,他们可能既不掌握大数据,也没有专业技术,但却擅长使用大数据,从大数据中找到自己的理想天地。

面对即将来临的大数据时代,个人将如何应对自如?这是个严肃的问题。

大数据读后感篇2

去年的“云计算”炒得热火朝天的,今年的“大数据”又突袭而来。仿佛一夜间,各厂商都纷纷改旗换帜,推起“大数据”来了。于是乎,各企业的cio也将热度纷纷转向关注“大数据”来了。有一张来自《程序员》微博的漫画很形象。我觉得这张图,很真实地反映了现实中小企业云计算,大数据的现状。

不过话又还得说回来,《大数据时代》是本好书。

当然,很多it知名人士也大力推荐,写了好多读后感来表述对这本书的喜欢没看此书之前,对所谓大数据的概念基本上是一头雾水,虽则有了解关注过现在也比较火热的bi,觉得也差不多,可能就是更多的数据,更细致的数据分析与数据挖掘。看过此书后,感觉到之前的想法,只能算是中了一小半吧———巨量的数据,而另一前:着眼于数据关联性,而非数据精确性,或许才是大数据与现时bi的不同,不仅仅是方法,更多的时思想方法。不过坦白讲,到底是数据的关联性重佳,还是数据的精确性更好,还真的需要时间来检验一下,至少从现在的数据分析方法来论,更多的倾向于数据的精确性。

看完此书,我心中的一些问题:

1、什么是大数据?

查了查百度百科,是这样定义的:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的.的资讯。大数据的4v特点:volume、velocity、variety、veracity这个好像是ibm的定义吧。

以个人的观点来看:数据海量,存储海量都是大数据的基本原型吧。

2、大数据适合什么样的企业?

诚然,大数据的前提是海量的数据,只有拥有巨量的数据资源,方能从中查找出数据的关联性,才可以让通过专业化的处理,让其为企业产生价值。针对电信运营,互联网应用这样海量用户的数据的大企业,也是在应用大数据的道路上拥有得天独厚的条件,但是针对中小企业呢?销售订单数据?若非百年老店,估计数据也是少得可怜,能用的可能只有消费者数据了吧。貌似大多数厂商,用来举例的也就是消费都购买行为分析为最多。

同样,在公共事业类的政府机构,大数据的作用也许也能很好的发挥。反而感觉在大多数中小型企业应用大数据,似乎有点大题小作。书中说:大数据是企业竞争力。诚然,数据是一个企业的核心无形资源(利用得好的话),但是否所有的数据,或都换则方式说:所有的企业都以大数据为竞争力,是否真的合适么?是否在中小企业中,会显示得小题大做呢?

3、大数据带来的影响

当一波又一波的it技术热潮源源不断地向我们铺面而来的时候,你甚至都没有做好准备,你都要开始迎接它所给你带来的影响了。经过物联网,云计算的推波助澜下,大数据开始登场了。但它到底给我们带来了什么呢?

1)预测未来书中以google成功预测了未来可能发生流感的案例来开篇,表明通过大数据的应用,可以为我们的生活起一个保驾护航的指向标。实质很简单,技术改变世界。

2)变革商业大数据所带来的商机,同时会衍生出一系列与大数据相关的商业机遇与商业模式,数据的潜在价值会源源不断地发挥作用可以容易想到的是未来有专门的数据收集,数据分析,数据生成的一条数据产业链产生。影响的,当然是it公司

3)变革思维书中所说:因为有海量的数据作基础,未来,我们可能更关注数据的相关,而非精细度。对这条,本人还是持保留意见的。

大数据读后感篇3

世界正迈入大数据、云计算的时代,人类朝着数据化、数字化的方向发足狂奔,我们原有的科学、技术、工作和生活方式正在被信息技术所改写,很多科学领域会被大数据技术所替代,也会崛起很多新兴科学家和职业,譬如数据科学家、数据中间商等。大数据会颠覆很多的产业和行业,甚至一夜之间就能变换运营模式,因为在大数据面前,人类不会再向以前那样追寻着“为什么”,更多的是在样本和概率面前做着商业决策的调整,“快”和“实用”更能满足大众的需求。

数据之大,漫无边际,无穷无尽,包含着我们人类的一呼一吸,一举一动。处在大数据帝国的前夜,眺望星空,这是个最好的时代,因为数据时代转折的重要性,不亚于黑猩猩站立起来行走划时代,很多科幻片里的场景会出现在我们的日常;这也会是个最坏的时代,因为人类最终会为此走向哪里,只有苍穹能知道!

当我们拥有海量数据时,绝对的精准不再是我们追求的主要目标,我们乐于接受数据的纷繁复杂,也只有接受不精确性,我们才能打开一扇从未涉足的世界的窗户。——《大数据时代》

小数据时代,我们在数据的精准性上花费很多,包括规则和准则、复式记账的平衡规则、信息系统等等,数据闭环,所以数据具有结构性,所以可以找根寻踪,找寻问题的根源,寻求解决方案。

大数据时代来临,因为数据量的庞大,以及数据背后的繁杂性,以及处理数据的知识it工程师和计算者,别忘了,拥有数据的是政府和独角兽商人,所以,他们很难对数据进行深度分析,这样也会催生各个领域的数据分析业务,数据生态链核心就清晰了起来。

大数据会取代小数据吗?这是不可能的事,大数据和中小数据之间的防火墙更会高筑!大数据都是基于样本的非结构性数据,推送到我们面前的数据指引,都已经经过了各种算法的粗加工,融入了计算者的各种算法,算法会因人而异,利用我们过去的电子痕迹,预测我们的现在和未来,一花一世界。初期的一大一小,数据的交融,像极了海上的渔网,具有强关联性。数据就像是一个神奇的钻石矿,在其首要价值被发觉后,仍能不断创造价值。大数据拥有者依赖技术专家挖掘数据的价值,但技术专家(数据武士)并没有想象中那么耀眼,他们在大数据中淘金,发现了金银珠宝,可最后却要把这些财富拱手让给大数据拥有者。——《大数据时代》

当恐龙消失,人类慢慢成为了动物界的主人。数据是我们工作、生活中的点滴记录,它真实、朴实无华,它们也会有声音,只是需要有慧眼和思维才能驾驭。

我们只有跨过数据化、数字化的长河,才能开启ai时代,路途遥远,主人!这是一本好书,值得推荐。

大数据读后感篇4

世界的本质就是数据,当你掌握了数据,你便掌控了世界—你可以轻而易举地通过数据中的相关关系预测事物的发展,将一切不利因素扼杀于摇篮之中—这远胜于"防患于未然"。

?大数据时代》一书,让我们在观念上有了三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。全书介绍了"大数据"时代三种大的变革:思维变革,商业变革和管理变革。在这些巨大变革如洪水一般的"冲击"之下,现代社会的运作方式必将有重大的改变,若不顺应这种变革的潮流,就像古中国固步自封,最终被坚船利炮打开国门而自己还用着长钩铁戟抗争一样,不可避免被掠夺,被落于世界进程之后,所以我们必须转变我们的思想。

"我们不再热衷于寻找因果关系,而应该寻找事物间的相关关系",我想这句话是本书的核心思想。大数据时代,信息与数据已成为了一切的本源,我们生活在各种数据构成的海洋之中,如果从另一种视角看,就好像无数条"看不见的线"将我们与这些数据联系到一起,这是我们以前从未有过、从未想过的。大数据改变了我们以前的通过因果关系了解世界的方法,而提供了几种新的途径,因为,在大数据时代,我们可以分析更多数据,有时甚至可以处理和某个特别现象相关的所有数据,也就是:样本=总体;而且,当研究数据如此之多时,我们已不热衷于"精确",而是"混乱",若不接受"混乱",那么有95%的非结构化数据无法利用,这将无法使我们构建完整的数据世界,在分析更多、更全面的数据之后,我们就可以从这些数据之中发掘它们的相关关系,即以"是什么"而不是"为什么"的角度看待数据,不用管其从何而来,只要分析其如何影响其他事物既可,即"让数据自己发声",这些,彻底推翻了人类以前探索数据的方法,展现了一个全新的世界。

这种观念以惊人的力量给现知识状况带来了巨大的冲击,通过对海量数据的分析,获得巨大价值的产品和服务,或深刻的洞见。比如谷歌公司,2009年流感流行之时,通过检测检索词条,处理34.5亿个不同的数据模型,通过预测并与2007、2008年的美国疾控中心记录的实际流感病例进行对比后,确定了45条检索词条组合,并将其用于一个特定的数学模型后,预测结果与官方数据相关系数高达97%,这种大数据技术,以前所未有的方式,通过海量数据分析得出流感所传播的范围,为预测流感提供了一种更快速、高效的工具。

同时,虽然大数据可为人类造福、对抗病症,但这仅限于掌握这门技术而言,若不重视这种技术,当我们的对手早于我们一步构建这种数据网络之时,便是我们的灾难,想想,大数据虽核心的在于预测,当敌人通过这种手段预测我方下一步的行动,将是可怕的—比如你的导弹将从何处发射,将飞往哪,你的军队动向、目标,总之所有一切"未来"将掌控于敌手,敌方甚至可以借此发现那些将来有"大作为"的人,从而进行渗透或扼杀,这对我们的发展无疑是致命的,所以,尽快加速大数据系统的构建进程是必须的。

对于我们国防生,也必须顺应这种发展趋势,未来的时代必将是数据极易获取,数据网络共享化的时代,通过这些数据,建立数据模型,可以准确分析并给出适合每一个人的计划,如运动量、训练强度,可以"先知、先觉",及时发现一个人的负面情绪前及时疏导,这些必将成为现实,我们必须跟进时代,做好准备,去应对大数据时代的一切!

大数据读后感篇5

我主要读了第一部分和第三部分。

第一部分是大数据的思维变革,作者舍恩伯格提出了三个观点,一是"不是随机样本,而是全体数据",二是"不是精确性,而是混杂性",三是"不是因果关系,而是相关关系",作者被誉为"大数据时代的预言家",抛出的观点是掷地有声的,下面我将谈谈我对这三点的理解。

对于一,我们必须承认我们以往做的处理抽样数据得到结果的方法,是省时省力省钱的,而且判断结果是相对高精准的,如人口普查这一案例,如果采用全体数据进行统计分析的话,工作难度是相当大的,最后的结果也不会很满意,这是得不偿失的。但是随着数据处理技术的飞速发展,我们已经具备了处理大量数据的能力,如果在数据分析过程中采用全体数据,就能避免抽样数据可能由于选取偏见带来的非随机性,处理全体数据也必将成为一种趋势。用在国防生管理工作中,就是管理层要对每个个体都给予充分的关心与互动,对于优秀的固然要偏爱,但是对于较差的也要保持"不抛弃不放弃"的态度,让每一个个体都找到自己的定位与价值。

对于二,作者强调通过掌握更多的数据,暂时牺牲精确性,关注更多容易被忽略的细节,来做更多的事,得到更多的结果,也就是说我们要有一定的包容错误的能力。我们在收集数据时,要主动获取更多的数据,少加一些限制性条件,然后应用我们处理大数据的能力,或许会获得意想不到的结果。作者举了一个谷歌翻译系统的例子,通过英语作为中转,进行各语言之间的转换。此处的启发就是用我们最擅长的途径,不拘泥于特定规则,来达到我们的目的,也就是说我们要先认清自己,不去刻意的模仿,找出最适合自己的一套方法。

对于三,作者指出知道"是什么"就够了,没必要知道"为什么",乍一看这个观点觉得有点无脑,但是结合第二点就合理了,降低对精确性及原因结果的要求,通过对相关数据的广泛分析,进而得到更丰富更多元的结果。如购物时,系统的购物推荐,并不是肯定你会购买,仅仅是你感兴趣进而可能会买就足够了。其实作者对"相关关系"的强调,主要是大数据强大的预测能力,而且这种预测性能还是相当精确的。以上只是我用作者的观点佐证他自己的观点,证明其一定的合理性,但是我是不完全认同的,在航天领域,我们对成功率的要求是极高的,尤其是载人航天领域,我们必须做到万无一失,我们对每一个结果都会深究其根,找出原因。对于国防生体能成绩的分析也是如此,结果只是我们的一个评价机制,而最重要的还是产生这一结果的原因及过程。

第三部分是大数据的管理变革,本来以为作者会讲点如何通过大数据来改革管理机制和提高管理效率,没想到作者只是讲了大数据其实就是我们的隐私的暴露,提出了要让数据采集管理公司对数据的使用负起责任的解决途径。个人感觉,一是我们在平时要意识到个人隐私的保护,而是相关法律政策的完善,真正的让大数据服务我们的工作生活,而不是一种变相的威胁。

大数据读后感5篇相关文章:

我的小与大读后感7篇

大葫芦读后感模板8篇

大孔雀蛾的读后感6篇

我的小与大读后感通用6篇

大孔雀蝶的读后感6篇

安全大排查大整治自查报告5篇

大安全大反思心得体会5篇

大总结大反思心得体会5篇

大安全大反思心得体会推荐5篇

幼儿园安全大排查大整治自查报告5篇

大数据读后感5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
130575