通过整理自己的思路,我们能够更系统地表达读后感,写读后感时要斟酌每个用词,这种字斟句酌能培养精准表达的能力,下面是叁五范文网小编为您分享的雾之美读后感5篇,感谢您的参阅。
雾之美读后感篇1
我第一次看到这本书是在两三年前,当时看的是电子书,虽然没太仔细看,但是第一次近距离了解到这些互联网应用背后的数学原理。
前段时间,我在同学的桌上看到了《数学之美》的纸质书,就向他借来读。虽说"书非借不能读也",但实际上借了书也没能好好读,断断续续读了有一个月才读完。
由于工作背景的缘故,吴军博士的这本书主要内容集中在语言识别和搜索领域,但这丝毫不妨碍它确实反映了很多共同的道理。我总结了几点供大家探讨。
1. 简单就是美
欧拉公式,最美的数据公式之一。
虽然在大家的眼里,数学是一门深奥的学科,但是很多数学规律却能用非常简单的公式表示出来。我想"简单却非常有用"或许就是数学之美的内涵吧。
书中作者给了很多"简单却非常有用"的例子,比如简单的布尔代数就是搜索引擎的数学基础;比如助google一举逆袭成为搜索老大pagerank算法就是矩阵乘法迭代结合tf-idf公式;地图导航搜索就是简单的动态规划;统计语言模型可以轻松解决看似难度、复杂度超高机器翻译、语音识别。
数学的精彩之处就在于简单的模型可以干大事。从本质上讲,数学的思维方法就是抽象与简化。简单的模型怎么来?靠的是先抽象,后简化。对于复杂的问题,往往可以通过抽象,然后用数学模型来描述它。选择了合理的模型就成功了一半。但是有了模型,往往模型看着简单,但求解比较困难。这就需要合理假设继续简化,或者说通过增加合理的假设条件来简化计算。以书上提到的马尔科夫链为例,虽然公式的求解非常困难,但是一旦加上适当的假设,问题就一下子简化了非常多。
所以,针对纷繁芜杂的现实情况,我们一定要能时刻准备着把复杂问题简单化,一定要做到大胆合理假设,尽可能的简化问题,抓住其主要矛盾,先用很小的代价解决大部分的问题,剩下的部分再分步解决。
2. 透过现象看本质
作者说到,技术分为术和道两种,具体的做事方法是术,做事的原理和原则是道。技术容易学,但也容易落伍,所以追求术的人一辈子工作很辛苦,只有掌握了道的本质和精髓才能永远游刃有余。真正做好一件事没有捷径,需要一万小时的专业训练和努力。
道是什么?道实际上就是方向,就是判断。
我想有些领导之所以成为优秀的领导,是因为他们掌握了道,反而对具体的术不那么关注。
举个书上的两个例子,都是关于搜索的:一个例子是搜索的本质是什么?自动下载尽可能多的网页;建立快速有效的索引;根据相关性对网页进行公平准确的排序。另一个例子是搜索引擎作弊的本质是什么?是在网页排名信号中加入了噪声,因此反作弊的关键是去除噪声。
所以,我们在工作的时候,要善于理解事物的原理与本质。要先回答是什么、为什么?最后才是怎么做。再比如,在学习某个软件或某项技术时,就需要先掌握它的工作原理与工作机制,以便于我们判断其适用的场景和不适用的场景,而不是先去熟悉怎么用它。
3. 循序渐进、逐步演化
书上对自然语言处理着墨很多。最初的自然语言处理是基于规则的句法分析,但是一段时间过后,人们发现句法分析的准确率很难提升。正当句法分析派走投无路的时候,统计语言模型出现了,而且越走越顺,很快就把句法分析派远远抛在了后面。问题就来了,那为什么最开始科学家们不直接研究统计语言模型?答案当然是不能,原因是时机还不成熟,因为统计语言模型所需要基于的大数据量的语言库还没有,大规模并行计算的能力还不够。同样的,统计语言模型就是最好的吗?当然是不尽然,科学家们现在开始研究基于深度学习的自然语言处理,相信不久的将来,语言识别、机器翻译会有另外一个质的飞跃。
我们做什么事情都不可能是一蹴而就,一步到位,想毕其功于一役的往往最后的结局都是失败的。
对我们而言,不管是架构规划也好、系统建设也好、管理工作也好,更是需要找准突破口,循序渐进,逐步演化。当然,我们也不能固步自封、墨守成规。
雾之美读后感篇2
上个月去北京开会,顺道拜访了人民邮电出版社,合作多年的编辑陈冀康赠我一本《数学之美》,说一定是我喜欢看的类型。以前也在网上零散看过google黑板报上吴军先生的文章,对他的前一本书《浪潮之颠》也有耳闻,但没有读过。这次有机会集中阅读他的文章,确实是一段美妙的体验。
读完这本书有一点强烈的感受:工具一定要先进。数学是强大的工具,计算机也是。这两种工具结合在一起,造就了强大的google、百度、亚马逊、阿里、京东、腾迅等公司。他们不是百年老店,但他们掌握了先进的工具。
掌握了先进的工具,必将获得竞争优势。如果你知道哪里有一群软件工程师,维护着更大的一群计算机,那么不要犹豫,想办法使用他们提供的服务,因为这会给你带来优势。所以我们使用google的搜索和邮件,在亚马逊、京东和淘宝上购物,用qq和微博联系朋友,使用银行卡和网上银行,利用交易终端在全球市场上进行各种交易……
人类历史就是一部工具的进化史。石器、青铜、铁器、火药、蒸汽机、内燃机、电报、电话、电视、计算机、卫星、互联网,工具的进步引领着文明的进步。新的工具不断淘汰老的工具,就像互联网视频点播正在淘汰电视、微博正在淘汰报纸、电子书正在淘汰纸质书那样。
但有一些古老的工具,今天仍有人在学习和使用,甚至在上面花费许多时间。毛笔就是这样一个例子。今天学习掌握毛笔这种“落后的”工具,还有什么意义?其实我们在使用一些“落后的”工具时,主要是在学习工具背后的思想。书法和绘画中蕴含的艺术审美的一般原则,经得起具体工具变迁的考验。甲骨文、金文、石鼓文所包含的对空间构图的理解,仍然值得现代人学习。思想工具是比实物工具更强大的工具。
工具组合使用,形成更强大的新工具。《数学之美》中提到的马尔可夫链虽然是很强大的工具,但我在数学课上没有听老师提到过。这本书中给我印象最深的例子是余弦定理和新闻分类。余弦定理是中学数学,再加上一些不算很难的多维向量的知识,竟然解决了计算机新闻分类这样的难题!
每一种工具的背后,是人们对世界的一种理解。蒸汽机和内燃机背后,是力学的世界。电报、电话、电视、计算机和互联网背后,是信息的世界。数学是抽象的工具,是其他工具背后的工具。每一门学科要成为科学,都少不了数学。也许有一天人们会习惯,用数学工具来分析艺术。数学是一种语言,它源于具体的世界,又高于具体的世界。如果说语言是对世界的认识和描述,如果说数学是一种语言,那么它一定是最接近神的语言。看似毫不相关,却又能描述万事万物。
学习数学有什么用?物理学家费曼当年在大一时提出这个问题,他的师兄建议他转到物理系。今天,这个问题已不成为问题。具有扎实数学功底的人才正进入各行各业,例如金融业。我认识一个出版社的老总,他招应届毕业生有一个条件:数学要好。
工具虽好,关键还要会用。最终要回到掌握先进工具的人。软件算法工程师加上计算机集群,这是目前一流企业必需的装备。正如马克.安德森所说的,各行各业的一流公司,都是软件公司。优秀的软件算法工程师,是人才争夺的焦点。这样,我们就容易理解google招工程师的要求。
对信息加工处理和传递的能力不断增强,是知识经济的特点。《数学之美》展示了google如何运用数学和计算机网络,带领我们进入云计算和大数据时代。
知识经济时代的工作,就是在各自的领域中进行科学研究。科学研究要大胆假设,小心求证。科学研究要量化。科学研究要有对比实验。科学研究要有数学模型。科学研究要有田野调查。科学研究要有文献查证。科学研究要有同行评议。《数学之美》向我们介绍了自然语言分析领域的科研方法和过程。
任何一个领域,深入进去都有无数的细节。有兴趣的人不但没被这些细节吓倒,反而会兴致勃勃地研究,从而达到令人仰慕的高度。吴军先生向我们展示了数学和算法中的这些细节,也展示了他所达到的高度。值得我学习。
感谢吴军先生分享他的知识和深刻见解,也感谢人民邮电出版社出了这样一本好书。
雾之美读后感篇3
这本书一共3章,主要介绍了这些数学方法:统计方法、统计语言模型、中文信息处理、隐含马尔科夫模型、布尔代数、图论、网页排名技术、信息论、动态规划、余弦定理、矩阵运算、信息指纹、密码学、搜索技术、数学模型、最大熵模型、拼音输入法、贝叶斯网络、句法分析、维特比算法、各个击破算法等。从第一章开始其明了幽默的语言就深深的吸引了我,让我觉得如果早一点看这本书,也许数学之于我就是另一番天地。
第一章里作者从原始人类的通信方式开始入手,人类最早利用声音进行的通信依赖于开篇给出的"编码-传输-解码"的基本原理,指出原始人的通信方式和今天的通信方式没什么不同,这世界上近现代最普遍的原理大部分都在人类发展的历史上被无意识的使用着。
第六章信息论给出了信息的度量,它是基于概率的,概率越小,其不确定性越大,信息量就越大。引入信息量就可以消除系统的不确定性,同理自然语言处理的大量问题就是找相关的信息。信息熵的物理含义是对一个信息系统不确定性的度量,这一点与热力学中的熵概念相同,看似不同的学科之间也会有着很强的相似性。事务之间是存在联系的,要学会借鉴其他知识。
这本书里也能找到不少在学的课程知识,如大学专业课里,数电总是要比模电简单不少,而自然界里大部分的信号都属于模拟信号。所谓模拟信号,是指从时间和数值两种维度上看来都是连续变化的信号。在实际电路中,模数转换是一个很重要的过程,将预处理的模拟信号经过模数变换为数字信号,然后进行数字信号处理。而数字化处理有很多优点,比如功能强大、抗干扰能力强、易于传输等。
简而言之,如果没有数学,就没有数字信号处理和传输的概念,而数字信号传输在当下大规模的集成电路里是必不可少的,这是通信成功的基本要求。
作者把生活中遇到的复杂的问题,以简单清晰,直观的模型或者公式展现出来。我们可能过于注意生活中的种种奇妙现象,往往忽略了追求其理论逻辑的演绎,而这,也是大部分问题的主要根源。
罗素曾经说过:"数学,如果正确地看,不但拥有真理,而且也具有至高的美";爱因斯坦也曾说过:"纯数学使我们能够发现概念和联系这些概念的规律,这些概念和规律给了我们理解自然现象的钥匙。"数学在所有科学领域起着基础和根本的作用。"哪里有数,哪里就有美"。在这里,我也想把《数学之美》真诚推荐给每一位对自然、科学、生活有兴趣有热情的朋友,不管你是从事职业,读一读它,会让你受益良多。
吴军老师在《数学之美》中提到:"这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余"。回到我们日常的生活中,需要学习的东西、技术太多太多,如果一味地只为去追技术的脚步,那么我们也会很累很累。然而基本的原理却是没有怎么变化的。只见森林,不见树木,难免迷失;站在高处向下看,也许我们一直看不到底,但是站在底处却是可以看见底的。
雾之美读后感篇4
?数学之美》,一个从事多年工作的谷歌研究员眼中的数学。令我大饱眼福的是,大学里面的数学知识竟能如此广泛运用到了计算机行业中。
在语音识别、翻译,还有密码学领域,有着许多基于概率统计的模型和思想。当然,贝叶斯公式是基础,应用到隐含马尔科夫链模型,神经网络模型。
在搜索中,一些相关性的计算,无不用到了概率的知识。在新闻分类中,用到了一些有关矩阵特征值、相似对角化的知识。当然,在图像处理方面,矩阵变换可谓是无处不在。另外,在识别方面,有一些通信模型,涉及到了信道、误码率、信息熵。
最近刚开学也没什么事,所以就想随便找几本书看一下,但最好别是那种太艰深晦涩的书。8月份一直到现在,吴军写的这本12年5月出版的《数学之美》一直盘踞京东、亚马逊等各大网上商城科技类图书的榜首,当然,还有早些时候出版的《浪潮之巅》也排在很靠前的位置。心想市场的力量应该能帮我挑出好书吧,于是就从图书馆借了一本来,一直到今天晚上把它给看完了。
因此想写一点东西来总结、反思一下,反正刚开完班会也没什么事干。
写在前面的建议:如果你不讨厌数学的话,强烈推荐这本书,网上也可以下到电子版,不过阅读感觉上还是很不一样的。
废话就不多说了,《数学之美》其实是一本科普类的读物,所面向的是接受过普通高等的人,完全不需要在特定领域有很深的造诣就可以看懂,大概懂一点线性代数、概率统计、组合数学、信息论、计算机算法、模式识别最好(虽然列举了这么多,其实有些不懂也没关系……),所以尤其适合信科的人看。内容大部分是和人工智能、计算机相关的,这并非我所学的专业,但作者比较擅长将看似复杂的原理用简明的语言表达出来,所以可读性还是很好的。
吴军是清华大学毕业的,之前任职于google,后来到了腾讯,这些文章都是发表在google黑板报上的,后来经过了重写,所以网上下载的和书本内容有所差异。由于吴军本人是研究自然语言处理和语音识别的,所以统计语言模型的东西可能会多一点,不过我觉得这丝毫不妨碍全书数学之美的展现……感觉收获还是挺多的,知识上的有一些,但更多还是思维方式上的。作者举了很多例子试图让人明白很多看似复杂的高科技背后,基本原理其实是出乎意料简单的(当然,必须承认第一个想到这些方法的人还是非常了不起的……)。比如高准确率的机器翻译,看上去好像是计算机能够理解各国语言,隐藏在背后的却是很多具有大学理科学历的人都非常清楚的统计模型和概率模型;再比如拼音输入法的数学原理,早期的研究主要集中在缩短平均编码长度,比如曾经流行一时的五笔输入法,而现今真正实用的输入法却是有很多信息冗余、编码长度比较长的拼音输入法,作者从信息论和市场的角度做了简单的阐述;又比如新闻的自动分类,许多非it领域的人可能会认为计算机可以读懂新闻并进行分类,而实际上只是特征向量的抽取、多维空间中向量夹角的计算,非常非常简单,但凡学过一点线性代数的人绝对是一看就懂的……当然,完美的实现还需要考虑很多细节和现实的情况,但这并不是这本书所关注的地方,数学之美在于其简洁而不是繁琐。
除了对于具体信息技术的剖析之外,作者还花了很大篇幅来讲一些杰出人士的成长过程,特别是把这些人的成长经历和中国学生的成长经历作对比。虽然作者并没有明说,但字里行间多少流露出对于中国高等以及很多中国企业的批评,一是的功利性,缺乏宽松的独立思考的环境,即使学了一堆理论也难有用武之地,自然也就缺乏创新性的成果;二是中国企业的短视,大部分都不舍得在新框架开发上投资,而是坐享学术界和国外企业的研究成果。
总结一下呢,《数学之美》事实上不能带给你编程能力的提升,也没法让人的数学水平有显着的提升,但它在很大程度上让你跳出教科书式的繁琐细节的束缚,能够从更宏观的角度来思考信息世界背后的数学引擎的运行原理,让人明白看似很高级、复杂的东西背后其实并不如我们所想象的那样复杂,而我们所学的“枯燥”的数学真的可以“四两拨千斤”,改变亿万人的生活。
雾之美读后感篇5
人们发现真理的形式上从来都是简单的,而不是复杂和含混的。
——牛顿
自小就学数学的我,并不觉得它是美好的。于我而言,数学就像紧箍咒一样,不能提,一提。就头疼。
而看了吴军博士所写的《数学之美》后,我对数学的感觉,从以前的被动获取和勉强学习,变成了强烈热爱和主动积极的学习。这原因就在于我发现了它的价值,它的一枝独秀,不可或缺的地位,数学的博大精深和对其相关的各类事业的发展的价值已使我深深陶醉其中。这本书中有很多复杂且长的公式,但这并不妨碍大众的阅读,因为它并非在于让你了解更多it领域的知识,而是用了大量篇幅介绍各个领域的典故,让我们感受数学思维。这就像李欣教授所说:“成为一个领域的大师有其偶然性,但更有其必然性。其必然性就是大师们的思维方法。”
英国哲学家弗朗西斯·培根在《论美德》这篇文章中讲:“美德就如同华贵的宝石,在朴素的衬托下最显华丽。”数学的美妙,也恰恰在于一个好的思维,好的方法。
在《数学之美》十四章,我被它的标题吸引到了。“余弦定理和新闻的分类”,这俩看似八竿子打不着。却有着紧密的联系。可以说,新闻的分类很大程度上依赖的是余弦定理。我们都知道,计算机处理一个问题是让他去算,而不是像人类一样理解了它,再去解决。而科学家们遇到这个问题,却用了另一种思维,他们把文字的新闻变成一组可计算的数字,然后再设计一个算法来算出任意两篇新闻的相似性。稍详细一些就是:对于一篇新闻中的所有实词。计算出它们的tf—idf值,再把这些值按照其在对应词汇表的位置依次排列就得到一个向量,这即新闻的特征向量。这时,就可以通过计算两个向量夹角来判断对应的新闻的接近程度,这也就要用到余弦定理了。我在必修五数学书上学到余弦定理时,很难想象它可以用来对新闻进行分类。在这里我又一次看到了数学工具的用途。
在书中,我也了解到了数学的发展实际上是不断的抽象和概括的过程。这些抽象了的方法看似离生活越来越远,但他们最终能找到应用的地方,布尔代数便是如此。
布尔代数的.简单不能再简单了。运算的元素只有两个0和1,基本的运算只有“与”、“或”和“非”。几乎就是我们现在所学的“判断命题真假”。在布尔代数提出后的80多年里,他确实没有什么像样的应用。直到1938年香农在他的硕士论文中指出,布尔代数来实现开关电路。才使得布尔代数成为数字电路的基础。正是依靠这一点,人类用一个个开关电路最终“搭出”电子计算机。
这些,都能体现作者“简单即是美”的思想。他在书中也写道:“数学的精彩之处就在于简单的模型可以干大事。”这些,也都是我从未感受到过的。并且,在这本书中,作者也用了不少篇幅来介绍通信领域的世界级专家,让我对真正的世界级学者有更多的了解和理解,比如贾里尼克,google ak—47的设计者——阿米特·辛格博士,自然语言处理的教父米奇·马库斯等等。
爱因斯坦说过:“从希腊哲学到现代物理学的整个科学史中。不断有人力图地表面上极为复杂的自然现象归结为几个简单的基本概念和关系,这就是整个自然哲学的基本原理。”这本书把数学在it领域的美丽予以了精彩表达,我也知道,把一件复杂的事用简单的语言表达出来,并非易事,这应该也是各界人士都对这本书予以好评的原因吧。
当然,我也明白,欣赏美不是终极目的,更值得我们追求的是创造美境界。
还有,希望未来的自己,无论生活好与坏,都能少一点浮躁,多一点踏实和对自然科学本质的好奇求知。
雾之美读后感5篇相关文章:
★ 重生读后感5篇
★ 敬业读后感5篇