5的倍数的教案优秀7篇

时间:
pUssy
分享
下载本文

教案写好了,才能保证教学目标的实现与落实,教案的准备过程使教师更加了解学生的学习状况,从而制定个性化的教学计划,以下是叁五范文网小编精心为您推荐的5的倍数的教案优秀7篇,供大家参考。

5的倍数的教案优秀7篇

5的倍数的教案篇1

本单元安排在学生已经掌握了许多自然数的知识之后,系统地教学分数的意义和性质之前,可以使学生进一步丰富自然数的知识,了解自然数之间存在的倍数与因数关系,体会自然数都有因数,而且不同自然数的因数个数是不同的。这些内容还能为以后教学分数知识作必要的准备。研究倍数与因数一般在非零自然数范围内进行,可以减少不必要的麻烦。因此,教材在底注中给予明确的规定。教学内容分四部分编排。

第70~73页教学相关的自然数之间的倍数与因数关系,求一个数的倍数或因数的方法。

第74~77页教学5、2、3的倍数的特点,以及偶数、奇数等知识。

第78~79页教学素数与合数的概念和判断方法。

第80~82页整理全单元的知识并组织综合练习。

编写的你知道吗介绍哥德巴赫猜想和我国数学家研究这一猜想取得的显著成就。两道思考题让学生利用所学的数学概念探索有挑战性的问题。

1? 联系实际体会自然数之间的倍数、因数关系,探索找一个数的倍数与因数的方法。

教材的第一部分先教学倍数、因数关系,再教学求倍数与因数的方法。前者是形成数学概念,后者是应用概念。

(1) 第70页的例题从12个相同的正方形拼长方形开始教学,学生对这个活动已经很熟悉,几乎人人都知道有不同的拼法,都能顺利地拼出三种不同的长方形。教材根据各种拼法中每行正方形的个数与行数,把三种拼法分别表示成43=12、62=12和121=12。以43=12为例讲了12是4的倍数,也是3的倍数,4和3都是12的因数。又让学生说出62=12、121=12里存在的倍数、因数关系。这道例题有两个编写特点: 第一个特点是作为研究对象的三个数学式子都从具体的操作活动中提取出来,有助于学生联系现实情境和实际经验体会倍数与因数的含义;第二个特点是给学生举一反三的机会,用43=12里学到的倍数、因数知识解释62=12、121=12这两个式子里的倍数与因数关系,充分地调动了学生的积极性和主动性。教学这道例题要注意,倍数与因数是一种关系,客观存在于两个具体的自然数之间。因此,要通过完整的语言表达关系,让学生体会这种关系,如4是12的因数、12是4的倍数,不能说成4是因数、12是倍数。

(2) 第71页的两道例题分别是教学找一个数的倍数和找一个数的因数的方法,虽然内容不同,教学方法都非常相似。即利用初步建立的倍数与因数的概念,联系已经掌握的乘除法口算,让学生在探索中找到方法。

找3的倍数,采用的思路是3和任何非零自然数的乘积都是3的倍数。这一思路容易理解、容易操作,与建立倍数、因数概念的大背景保持一致。教学时要引导学生从3的倍数是怎样的数想起,先形成找3的倍数的思路,然后从小到大一个一个地找,并按顺序写出来。还要理解例题在写出3的倍数时为什么用了省略号。试一试独立找2和5的倍数,一方面巩固找一个数的倍数的方法,另一方面通过3、2、5的倍数可以发现有关倍数的一些规律。如一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数等。在若干个实例中寻找共同特点,总结成规律,虽然仍旧是不完全归纳,但对小学生来说已经是比较科学的方法了。

在找36的因数时,如果沿乘积是36的自然数都是36的因数这个思路就能得出想乘法算式这种方法,这条思路容易形成,在操作时往往不大顺畅。如果按36除以哪些自然数没有余数?这个思路想就能得出想除法算式这种方法,这条思路一旦形成,方法易于操作。因此,例题从因数的概念出发,利用()()=36这个式子先让学生明白,找36的因数就是写出这个式子的因数。然后联系除法的意义,引导学生利用除法求36的因数。

在找36的因数时,无论想乘法算式还是想除法算式,学生一般都从无序到有序,从有重复或遗漏到不重复不遗漏。教学要承认学生实际,允许他们经历这样的过程。先按自己的思路、用自己的方法写36的因数,能写几个就写几个,是什么顺序就什么顺序。然后在交流中相互评价,删去重复的,补上遗漏的,并组织学生认真讨论怎样找才能不重复不遗漏,体会过程、总结方法、提升水平,学会有序地思考和寻找。

还有一点需要指出,《标准》要求学生能够写出10以内自然数的倍数、100以内自然数的因数。教材在编写时认真落实了这些规定,在想想做做里没有编排找较大自然数的倍数的练习题。适量出现一些稍大的数(如30),写出它的全部因数。

2? 在找百以内5的倍数、2的倍数、3的倍数的活动中,认识这些数的特点。

教材第二部分教学5、2、3的倍数的特点。判断一个数是不是5的倍数,是不是2的倍数都是看这个数的个位上是几,方法是一致的。判断一个数是不是3的倍数要看它各位上数的和是不是3的倍数,特征与判断方法与5的倍数、2的倍数完全不同。所以这部分教材分两段编写,把5和2的倍数的特点合并在一道例题里教学,把3的倍数的特点安排在另一段里教学。两段教材都是寻找特点利用特点判断的教学线索,给学生很大的自主活动空间。

(1) 第74页例题先在百数表里5的倍数上画△、2的倍数上画○,于是表里出现两列画△的数和五列画○的数,其中一列数上画△也画○。这些符号有利于学生分别观察5的倍数和2的倍数,发现表现在个位上的特点。也便于发现哪些数既是2的倍数,又是5的倍数。结合2的倍数,联系以前讲过的双数和单数,列举了哪些数是偶数、哪些数是奇数。这道例题安排的操作活动和提出的问题难度都不大,教学时要尽量让学生通过自主探索和合作交流建构自己的`认识。

想想做做的安排很有层次。第1、2题是简单的判断,初步应用2的倍数与5的倍数的特点,起巩固知识的作用。第3、4题按要求组数,第3题组成的是两位数,没有明确每名学生都要全部、有序地写出符合要求的数,可以通过交流达到全部、有序的要求。第4题组成的是三位数,你排出了哪几种这个问题对有条件的学生要求有序思考并排出所有的数,对少数有困难的学生应尽量多排出几种,并向同伴学习有序的思考方法。第5题通过在数表中涂色,体会4的倍数一定是2的倍数,2的倍数不都是4的倍数。

(2) 发现3的倍数的特点比较难,第76页例题充分研究学生的思维习惯和学习需要,作了五步安排:

第一步在百数表里3的倍数上画○,这项活动让学生看到3的倍数与2的倍数、5的倍数不同,分散在表的各行各列里。由此产生猜想,3的倍数的特点可能与2、5的倍数不同。

第二步提出个位上是3、6、9的数都是3的倍数吗这个问题,学生可以在百数表上看到画○的数的个位上并不都是3、6或9,还有其他数。许多个位上是3、6、9的数上没有画○,它们都不是3的倍数。学生还可以任意写出一些个位上是3、6、9的数,逐一检验是否是3的倍数。这一步的目的是让学生更清楚地知道,3的倍数的特点不表现在它的个位上。

第三步为学生指点新的探索方向。把3的倍数用计数器的算珠表示,看看用几颗珠。先找较小些的两位数,再找更大的数。通过计算表示各个数所用算珠的颗数,初步发现算珠的颗数总是3、6、9、12等,这几个数都是3的倍数。这一步对发现3的倍数的特点关系很大,学生也乐意进行,要适当多安排一点时间。

第四步把算珠的颗数转化成各位上数的和,发现3的倍数的特点,这一步是教学难点。要引导学生从数的某一位上是几,计数器的那一位上就拨几颗珠这一事实理解计数器上算珠的总颗数就是这个数各位上数的和。从算珠的颗数是3的倍数推理出各位上数的和是3的倍数。

第五步是试一试,通过不是3的倍数的数,各位上数的和不是3的倍数的研究,从另一个角度验证上面发现的规律是正确的。

教材设计的五步教学过程是连贯的,步步深入、逐渐逼近数学的本质内容。既有对例证的细致研究,又有反例作验证,是科学而严密的过程。

想想做做里的习题数学思考的含量都比较高,除了第1题利用3的倍数的特点进行简单判断外,其他习题都需要仔细地想一想。如第2题要准确理解题意,除以3有余数即不是3的倍数的意思。第3题在方框里填数字的时候,要依据3的倍数的特征进行推理,而且答案是多样的,在每个方框里都有3个数字可填。第5题是组成三位数,首先要从四张数字卡片中选择3张,而且3张数字卡片之和必须是3的倍数,有两种选择,分别是5、6、7和0、5、7。然后再有序地把选出来的卡片排一排,组成三位数。前一种选择能排出6个不同的三位数,后一种选择只能排出4个不同的三位数。这些习题不要急于得出答案和结论,要注重过程,提供充分的时间,鼓励学生自主探索或合作学习。

3? 通过写因数、比因数个数等活动,建立素数和合数的概念。

第三部分教学素数和合数,教学活动的线索是: 分别找到2、3、5、6、8、9等自然数的因数按因数的个数把这些自然数分类接受素数、合数等数学概念应用数学概念判断50以内的自然数是素数还是合数。这些活动难度都不大,学生都能进行。在按因数的个数把、2、3、5、6、8、9分类时,可能需要稍微点拨,明确分类的标准。在讲述素数、合数概念时,语言必须准确。

这部分教材有三个特点: 一是在写2、3、5、6、8、9的因数时充分利用学生的已有能力,让他们在独立写因数的过程中体会这些数的因数个数不同;二是用填空形式引导学生把2、3、5、6、8、9按因数的个数分类,避免教学中出现不必要的枝节;三是主要使用素数这个名词,质数只是带了一带。这对学生无所谓,教师在开始阶段可能不习惯。

想想做做第1题利用11~20各数,让学生再次经历认识素数和合数的过程。要通过例题、试一试和这道题,让学生记住20以内的八个素数: 2、3、5、7、11、13、17、19。至于更大的素数就不要求记忆了。

4? 练习六整理和应用全单元教学的数学知识。

本单元教学了许多数学概念,是按下图的线索展开的。

乘法算式倍数2、5、3的倍数的特征偶数与奇数因数素数与合数

为了帮助学生进一步清晰地认识概念,提升应用数学知识的水平,练习六把上面的结构图分成四块组织整理。

(1) 扩大倍数与因数概念的背景。

倍数与因数的概念是在自然数(一般不包括0)的乘法算式上教学的。在一道乘法算式中,学生明白了倍数关系和因数关系。练习六第1题继续在除法算式中理解被除数是除数和商的倍数,除数和商都是被除数的因数。这样,学生对倍数关系和因数关系的认识得到深入,对用除法找一个数的因数的方法有进一步的体会。做到这一点并不困难,有除法的意义和乘、除法的关系为基础。

(2) 数学问题和实际问题并举,综合应用2、5、3的倍数特征的知识。

第2~4题练习2、5、3的倍数的特征,其中两道题是数学问题,一道题是实际问题。数学问题的形式容易引起对有关数学知识的回忆,实际问题的形式反映了数学内容在现实生活中的存在和应用。先安排数学问题,再安排实际问题,有助于学生在解决实际问题时运用有关的数学知识。第4题有一定的综合性,能发展思维的条理性,培养全面考虑问题的能力。

(3) 对容易混淆的概念,进行比较和区分。

学生对奇数与素数、偶数与合数往往混淆不清,第6题是为了区分这些概念而设计的。先在1~20各数中用○圈出素数、用△圈出偶数,回忆素数的意义和偶数的意义;再回答题中的两个问题,体会它们是不同的概念。要注意的是,两个问题都是看着表格呈现的现象回答的。其中的2既画了○,又画了△,这就表明素数里有偶数,偶数里有素数。教学时既要引导学生主动区分不同的概念,正确回答问题,又不要对这些问题进行抽象的,甚至文字游戏式的机械操练。

(4) 紧扣基础知识探索数学现象的内在规律。

第7题对学生来讲有两个特点: 一是涉及了几个数学概念,有连续的自然数、连续的奇数、3的倍数等,二是两个问题都是微型课题,题目中的找一找、算一算指点了研究方法。

第10题把五个数分别写成两个素数相加的形式。这五个数都是偶数,其实任何一个大于2的偶数都可以写成两个素数相加的形式。如果学生有兴趣,可以继续尝试。

5的倍数的教案篇2

【教学目标】

1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

2.引导学生学会判断一个数能否被3整除。

3.培养学生分析、判断、概括的能力。

【重点难点】

理解并掌握3的倍数的特征。

【复习导入】

1.学生口述2的倍数的特征,5的倍数的特征。

2.练习:下面哪些数是2的倍数?哪些数是5的倍数?

324 153 345 2460 986 756

教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

板书课题:3的`倍数的特征。

【新课讲授】

1.猜一猜:3的倍数有什么特征?

2.算一算:先找出10个3的倍数。

3×1=3 3×2=6 3×3=9

3×4=12 3×5=15 3×6=18

3×7=21 3×8=24 3×9=27

3×10=30……

观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

12→21 15→51 18→81 24→42 27→72

教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

(以四人为一小组、分组讨论,然后汇报)

汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。

3.验证:下面各数,哪些数是3的倍数呢?

210 54 216 129 9231 9876

小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

4.比一比(一组笔算,另一组用规律计算)。

判断下面的数是不是3的倍数。

3402 5003 1272 2967

5.“做一做”,指导学生完成教材第10页“做一做”。

(1)下列数中3的倍数有。

14 35 45 100 332 876 74 88

①要求学生说出是怎样判断的。

②3的倍数有什么特征?

(2)提示:①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

②接着再考虑什么?(最小三位数是100)

③最后考虑又是3的倍数。(120)

【课堂作业】

完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

【课堂小结】

同学们,通过今天的学习活动,你有什么收获和感想?

【课后作业】

完成练习册中本课时练习。

3的倍数的特征

一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

教学3的倍数的特征时,教师要注意学生的自主探索过程,通过猜一猜、算一算、想一想、验一验、比一比等教学环节,循序渐进地让学生参与到学习中来,但教师在想一想这个环节中要进行适当点拨、引导,这样效果更明显。

5的倍数的教案篇3

教学内容:

教材19页内容,能被3整除的数的特征。

教学要求

使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。

教学重点:能被3整除的数的特征。

教学难点:会判断一个数能否被3整除

教学方法:

三疑三探教学模式

教具学具:

课件等。

教学过程

一、设疑自探(10分钟)

(一)基本练习

1、能被2、5整除的数有什么特征?

2、能同时被2和5整除的数有什么特征?

(二)揭示课题

我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)

(三)让学生根据课题提问题。

教师:看到这个课题,你想提出什么问题?(教师对学生提出的问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)

(四)出示自探提示,组织学生自探。

自探提示:

自学课本19页内容,思考以下问题:

1、观察3的倍数,你发现能被3整除的数有什么特征?举例验证。

2、能被2、3整除的数有什么特征?

3、能被2、3、5整除的数有什么特征?

二、解疑合探(15分钟)

1、检查自探效果。

按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。

2、着重强调;

一个数各个数位上的数字之和能被3整除,这个数就能被3整除。

三、质疑再探(4分钟)

1、学生质疑。

教师:对于本节学习的知识,你还有什么不明白的地方,请说出来让大家帮你解决?

2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)

四、运用拓展(11分钟)

(一)学生自编习题。

1、让学生根据本节所学知识,编一道习题。

2、展示学生高质量的自编习题,交流解答。

(二)根据学生自编题的'练习情况,有选择的出示下面习题供学生练习。

1、判断下列各数能不能被3整除,为什么?

72 5679 518 90 1111 20373

2、58 115 207 210 45 1008

有因数3的数:()

有因数2和3的数:()

有因数3和5的数:()

有因数2、3和5的数:()

让学生说说怎么找的。

(三)全课总结。

1、学生谈学习收获。

教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。

2、教师归纳总结。

学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。

板书设计:

能被3整除的数的特征一个数各个数位上的数字之和能被3整除,

这个数就能被3整除。

5的倍数的教案篇4

小学数学《3的倍数的特征》教案

一、教学目标

?知识与技能】

理解和掌握3的倍数的特征,能熟练判断一个数是否是3的倍数。

?过程与方法】

经历观察、猜想、推翻猜想、再观察、再猜想、验证的过程,提升逻辑推理能力。

?情感、态度与价值观】

在猜想论证的过程中,体会数学的严谨性。

二、教学重难点

?重点】3的倍数的特征,判断一个数是否是3的倍数。

?难点】3的倍数的数的特征的归纳过程。

三、教学过程

(一)导入新课

复习导入:我们是如何研究2、5的倍数的'特征的?

引出继续利用百数表研究3的倍数的特征并出示课题。

(二)讲解新知

组织学生在百数表中圈出3的倍数,提出问题:能否猜想3的倍数的特征会与什么有关?

学生发现从个位探究并不成功,教师顺势引导——单纯横着看找不到什么规律,还能怎么看;或是提示我们只看个位不行还能怎么看。引导学生发现“斜着看时,十位依次增大1,个位依次减小1,总和不变”。

组织学生小组讨论,重点讨论3的倍数对于个位是否还有特殊要求以及十位与个位的和有没有什么规律,之后教师再组织学生反馈多次举例验证,便可以得出个位可以是任意数且十位和个位的和均为3的倍数。

提问学生应该如何找到3的倍数,引导学生发现总结规律的必要性。

师生共同总结得出:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

(三)课堂练习

1。判断下面的数是否为3的倍数。

24 58 46 96

2。尝试在每个数后面加一个数使这个三位数成为3的倍数。

(四)小结作业

提问:今天有什么收获?

带领学生回顾:3的倍数的特征;发现研究倍数的特征,方法却各有不一,体会数学知识的多样性。

课后作业:

思考什么样的数字同时是2、3、5的倍数,并尝试列举1000以内的这种数字。

四、板书设计

5的倍数的教案篇5

描述目标:

1、知识目标:①结合整数乘、除法运算初步认识因数和倍数的含义;②探索求一个数的因数和倍数的方法;③通过列举法,发现并概括出一个数的因数和一个数的倍数的特点;④能找出一个数的因数、一个数的倍数。

2、能力目标:使同学在认识因数和倍数以和探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学考虑的水平。

3、情感目标:培养同学观察、分析、笼统概括能力,体会教学内容的有趣,发生对数学的好奇心。

教学重点:结合整数乘、除法运算体会和理解因数和倍数的含义,探索求一个数的因数数或倍数的方法。

教学难点:引导同学探索并理解因数数和倍数之间的相互依存的关系。

教学过程;

一、导入。

1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。

2.同学动手操作,并与同桌交流摆法。

3.请用乘法算式表达你的摆法。

二、理解新知。

1.理解因数和倍数。

(1)观察3×4=12

今天我们研究的内容就在这里。咱们就以第一道乘法算式为例,3×4=12,数学上3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力,这就是我们今天所要研究的因数和倍数。

师板书:因数和倍数

(2)用因数和倍数说一说算式l×12=12,2×6=12中三个数的关系。

(3) 提问:在4+3=7中我们能说7是4和3的倍数,4和3都是7的因数吗?(同学讨论)

?设计意图:通过讲解、设疑、讨论等形式让同学从其内涵上加深对因数和倍数的理解,明确因数和倍数是相互依存的概念,不能独立存在。】

(4)归纳:

①因数和倍数都是表示两个数之间的关系,不能单独说那个数是因数,那个数是倍数。

②只有一个自然数是两个自然数的乘积时候才干谈上它们之间具有因数和倍数的关系。

③研究因数和倍数时,所指的数是整数(一般不包括o)。

(5) 讨论:板书:24÷4=6

提问:能说4、6是24的因数,24是4、6的倍数吗?

同学各说自身的理由,讨论后统一。

提示:4×6=24(教师板书),这样你看出来了吗?

(6)练习:①21×3=63, 是 的因数, 是 的倍数;6是18的 ,是3的 。

②先判断下面的算式中的数有因数倍数的关系。假如有因数和倍数关系,请说一说谁是谁的因数,谁是谁的倍数。7+5=12 7×5=35 20-13=7 8÷4=2

?设计意图:提高对因数和倍数的意义的认识。】

2.求一个数的因数。

(1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。

请同学们找出36的所有因数。

出示要求:

①可独立完成,也可同桌合作。

②可借助刚才找出12的所有因数的方法。

③写出36的所有因数。

④想一想,怎样找才干保证既不重复,又不遗漏。

(2)比较喜欢哪一种答案?为什么?

用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)

(3)练习:①对口令游戏。②16的因数有哪些? 11的因数有哪些?

(4)发现因数特点:36、16、11的因数你有什么发现吗?

师:虽然个数不相等,但它们的个数都是有限的。

小结:一个数的最小因数是1,最大的因数是它自身。一个数的因数个数是有限的。(同学总结不出此点不要急于点拨)

(5)练习:说特点猜数。

3.求一个数的倍数。

(1)3的倍数有:——,怎样有序地找,有多少个?

(2)练一练:6的倍数有;5的倍数有。

(3)发现倍数特点:找得对吗?我们一起来说一说。下面请大家仔细观察,你发现一个数的倍数有什么特点?可以前后四人小组讨论讨论。(导:发现最小的特征后问:那么7最小的倍数是几?10呢?)一个数的倍数还有怎样的特点?这些数的倍数你写得完吗?也就是说明一个数的倍数的个数是无限的。那么也没有最大的倍数。刚才大家发现了——,简单地说就是——

小结:一个数的最小倍数是自身,没有最大的倍数,一个数的倍数的个数是无限的。(和一个数的因数特点进行对比)

?设计意图:这个环节的教学主要把小组讨论和自主探索结合起来,让同学在讨论中体会过程、总结方法、提升水平,发现有关倍数的一些规律。】

(4)练习:判断题

四、拓展应用。

1.选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。

2.举座位号起立游戏。

(1)5的倍数。(2)48的因数。(3)既是9的倍数,又是36的因数。

(4)怎样说一句话让还坐着的同学全部起立。

五、黄金二分钟。

达标检测:

1、理解因数和倍数:练习:①21×3=63, 是 的因数, 是 的倍数;6是18的 ,是3的 。

②先判断下面的算式中的数有因数倍数的关系。假如有因数和倍数关系,请说一说谁是谁的因数,谁是谁的倍数。7+5=12 7×5=35 20-13=7 8÷4=2

?设计意图:提高对因数和倍数的意义的认识,达成知识目标中的第①个目标】

?评价规范:同学能正确理解和掌握因数和倍数的意义,尤其能通过算式找出一个数的因数和倍数】

2、会找一个数的因数:①对口令游戏。②16的因数有哪些? 11的因数有哪些?③说特点猜数。

?设计意图:通过对口令提升同学找因数的方法的方法训练,达成知识目标中的第②③个目标】

?评价规范:同学能用正确的方法,快速、正确的找出一个数的所有因数】

3、会找一个数的倍数:我会辩。【设计意图:达成知识目标中的第④个目标】

?评价规范:同学能用正确的方法,快速、正确的找出一个数的倍数】

5的倍数的教案篇6

学习内容:

人教版小学数学五年级下册第21页第8题、第22页。

学习目标:

1.通过综合练习,我能熟练掌握2、5、3的倍数的特征。

2.我能运用2、5、3的倍数的特征解决问题。

学习重点:

熟练掌握2、5、3的倍数的特征。

学习难点:

运用2、5、3的倍数的特征解决综合问题。

教学过程:

一、导入新课

二、检查独学

1.互动分享独学部分的`完成情况。

2.质疑探讨。

三、合作探究

1.小组合作,完成课本第21页第8题。

(1)3个3的倍数的偶数________________

(2)3个5的倍数的奇数________________

讨论:你能说出3个既是3的倍数又是5的倍数的偶数或奇数吗?

2.自主完成第22页第10题,然后与同伴交流。

3.小组合作,完成第11题,然后组内代表汇报。

4.小组交流“生活中的数学”。

5的倍数的教案篇7

教学资料:人教版12—16页的相关资料。

教学目标。

1、让学生理解倍数和因数的好处,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。能在1—100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。

2、让学生初步意识到能够从一个新的'角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括潜力,学会有序地思考问题,体会数学资料的奇妙、搞笑,产生对数学的好奇心。

教学重点:让学生理解倍数和因数的好处。

教学难点:探索并掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。

教学过程:

一、操作空间,初步感知

1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。

2.学生动手操作,并与同桌交流摆法。

3.请用算式表达你的摆法。汇报:1×12=12,2×6=12,3×4=12。

?评析】透过让学生动手操作、想象、表达等环节,既为新知探索带给材料,又孕育求一个数的因数的思考方法。

二、探索空间,理解新知。

1.理解因数和倍数

(1)我们就以3×4=12这道乘法算式为例,数学上我们说12是3的倍数,12也是4的倍数,3和4时12的因数。这就是我们这天所要研究的因数和倍数。

师板书:因数和倍数

师:根据黑板上的另两道算式,自己试着说说谁是谁的倍数,谁是谁的因数?指名口答。

(2)追问:如果说12是倍数,2是因数,能够吗?为什么?

教师:看来,倍数和因数的关系是相互的,我们只能说某个数是某个数的倍数,某个数是某个数的因数,不能够直接说某数是倍数,某数是因数。而且为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。

(3)拓展:出示72页想想做做第一题。同桌互练,指名口答。

(4)师:老师还写了一个算式,从这个算式里你能找到因数和倍数吗?24÷8=3看来,我们不仅仅能够根据乘法算式找因数和倍数,也能够根据除法算式找因数和倍数。

(5)试一试:从中选取两个数,用这天学的知识随便说两句话。

4682415

2、探索求一个数的倍数的方法

(1)师:刚才我们已经明白12是3的倍数,那还有哪些数也是3的倍数呢?请同学们自己找一找?同桌交流交流。

屏幕显示:3的倍数有哪些?指名学生回答。

(2)师:什么样的数是3的倍数?

明确:3的倍数是3与一个数相乘的积。如,3×1=(),3×2=(),3×3=(),括号里的数都是3的倍数。

教师:谁能按从小到大的顺序有条理地说出3的倍数?能把3的倍数全部说完吗?就应怎样表示?根据学生的口答,屏幕显示:3的倍数有3、6、9、12、15……。

(3)请你用同样的方法,找找2的倍数和5的倍数?

(4)提问:请同学们观察,刚才所找的2、3、5的倍数,你有什么发现?能够小组内讨论交流。

(5)、根据学生的交流归纳:一个数的倍数中,最小的是它本身,没有最大的倍数;一个数倍数的个数是无限的。

?评析】由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。

3、探索求一个数的因数的方法

(1)师:透过刚才的动脑思考,你们已经能够有序地找出一个数的倍数了,你能找出36的所有因数吗?

出示要求:①可独立完成,也可同桌合作。②可借助刚才找出12的所有因数的方法。③写出36的所有因数。4想一想,怎样找才能保证既不重复,又不遗漏。

(2)学生尝试。搜集学生作业,交流各自找一个数因数的方法。方法1:想乘法算式36×1=36;方法2:想除法算式36÷1=36;方法3:想乘法口诀;

(在交流中学生很有可能不能说完整,而是透过互相补充得到36所有的因数)板书:36的因数有:1,2,3,4,6,9,12,18,36。

(3)怎样找才能不重复不遗漏?在小组里说一说。

学生想到的方法可能是:从小到大找;一对一对找。

(4)试一试:你能找出15和16所有的因数吗?

(5)观察36、15和16的所有因数,你有什么发现吗?(小结出一个数最小的因数是1,最大的是本身)

?评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。透过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。

全课总结

1、这天我们一齐认识了倍数和因数,阅读课本70页,你还能发现什么?

2、游戏:对号入座规则:老师出一个数,看你卡片上的数是否贴合下面的条件,贴合的请站起来并且举起你的卡片。

师:我是45,我要找我的因数。我是6,我要找我的倍数。我是8,我要找我的因数,同时我也要找我的倍数。坐着的同学,下面老师要出个什么数字,不管是倍数还是因数,你们都能全部站起来吗?我是1,我找我的倍数。学生站起后宣布下课。

教学反思:

本课教学设计重在让学生透过自主探索,掌握求一个数的因数和倍数的方法,体验有序思考的重要性。体现了以下两个特点:

一、留足空间,让探索有质量。

留足思维空间,才能充分调动多种感官参与学习,充分发挥知识经验和生活经验,使探索成为知识不断提升、思维不断发展、情感不断丰富的过程。第一、把让同桌同学借助12块完全一样的正方形拼成一个长方形。由于方法的多样性,为不同思维的展现带给了空间。第二:放手让每个同学找出36的所有因数,由于个人经验和思维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。第三:透过观察36,15,16的因数和3,6的倍数,你发现了什么?由于带给了丰富的观察对象,保证了观察的目的性。第三:让学生“选用4,6,8,24,1,5中的一些数字,用这天学习的知识说一句话”。不拘形式的说话空间,不仅仅体现了差异性教学,更是体现了不同的人在数学上的不同发展。

二、适度引导,让探索有方向。

引导与探索并不矛盾,探索前的适度引导正是让探索走得更远。探索12块完全一样的正方形拼成一个长方形,有几种拼法?教师提示能想象的就想象,不能想象的可借助小正方形摆一摆。这样的引导,是尊重学生不同思维的有效引导。在找36的所有因数时,教师出示4条要求,既是引导学生思考的方向,又是提醒学生探索的任务。在让学生观察几个数的因数和倍数时,引导学生观察最大数和最小数,有什么发现?这样的引导,避免了学生的盲目观察。可见,适度的引导,保证了自主探索思维的方向性和顺畅性。整堂课,学生想象丰富、思维活跃、思考有序。整个认知过程是体验不断丰富、概念不断构成、知识不断建构的过程。

5的倍数的教案优秀7篇相关文章:

画乌龟的教案优秀5篇

f的幼儿教案优秀7篇

数学加1的教案优秀5篇

优秀的语文教案模板7篇

谁的本领大教案优秀5篇

折小狗的教案优秀5篇

幼儿关于鱼的教案优秀7篇

数字3的教案优秀5篇

竖的教学教案优秀5篇

优秀的中班美术教案反思5篇

5的倍数的教案优秀7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
156688